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Consideration of radial dependences of axial 
stresses in the shear-lag model for fibre pull-out 
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The shear-lag model has been used extensively to analyse stress transfer during single-fibre 
pull-out. To achieve analytical solutions, the radial dependences of the axial stresses in the fibre 
and the matrix are generally ignored in the shear-lag model. The present study considered these 
radial dependence in the shear-lag model. The differences between the predictions obtained by 
ignoring these radial dependences, considering the radial dependence of the axial stress in the 
fibre only, considering the radial dependence of the axial stress in the matrix only, and considering 
both radial dependences, have been addressed. 

1. I n t r o d u c t i o n  
Optimum toughening of a fibre-reinforced ceramic 
composite requires debonding at fibre-matrix inter- 
faces before fibre fracture as the main crack extends 
through the composite [1, 2]. Fibre pull-out tests 
[3-5] are often used to evaluate the interracial proper- 
ties of composites. The condition of interracial debon- 
ding has been defined by two criteria: the shear 
strength criterion [5-7] and the critical energy release 
rate criterion [8-10]. In the former, the shear-lag 
model has been used extensively to derive the max- 
imum interfacial shear stress, which is then compared 
to the interracial shear strength. Interracial debonding 
occurs when the maximum interracial shear stress 
reaches the interracial shear strength before the ap- 
plied axial stress on the fibre reaches the fibre strength. 

An analytical solution of the stress transfer during 
fibre pull-out is difficult to obtain, especially when the 
interface is bonded and the stress transfer is high (i.e. 
the stress gradient is high) near the loaded region. To 
derive analytical solutions in the shear-lag model 
[5-8, 11-16], approximations are required. Various 
theoretical analyses for this stress transfer problem 
have been reviewed [17]. Generally, the radial de- 
pendences of the axial stresses in both the fibre and the 
matrix are ignored in the analyses (i.e. the classical 
shear-lag model) [5, 6, 8, 10-14]. With this simplifica- 
tion, the difficulty in obtaining an analytical solution 
is greatly reduced. However, two exceptions to this 
simplification exist. (1) When the radial dimension of 
the matrix is similar to that of the fibre (i.e. the matrix 
becomes a thin coating), the radial dependence of 
the axial stress in the fibre has been considered [16]. 
(2) When the radial dimension of the matrix is much 
greater than that of the fibre (which is generally valid 
for fibre pull-out tests), the radial dependence of  the 
axial stress in the matrix has been considered [7, 15]. 

Recently, a modified shear-lag model was developed 
in which the radial dependence of axial stresses in both 
the fibre and the matrix were included in the analysis 
[18]. However, the approximations adopted in the 
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equilibrium equation in stress analyses were not clari- 
fied, and the results obtained from the classical shear- 
lag model, which is more widely accepted, were not 
included for comparison. As a complement to that 
work [18], the purpose of the present study was to 
address the approximations adopted in the modified 
shear-lag model, and to include the results obtained 
from the classical shear-lag model for comparison. 
The problem of assuming a constant interfacial shear 
stress along a bonded interface in analysing the experi- 
mental results has also been considered. 

2. The shear-lag model 
The idealized specimen for the single-fibre pull-out 
test (i.e. the shear-lag model) is shown in Fig. 1. A fibre 
with a radius a, is located at the centre of a coaxial 
cylindrical shell of matrix with an outer radius b, and 
a thickness t. The radial and the axial coordinates are 
r and z, respectively. The fibre is subjected to an 
applied axial stress, Cyo, at one end of the specimen (i.e. 
at z = t in Fig. 1). The stress transfers from the fibre to 
the matrix through the interfacial shear stress, ~i, such 
that the fibre is free of stress at z = 0. The results 
derived from previous shear-lag models (see Fig. 2a-c) 
are summarized and discussed in this section. For the 
modified shear-lag model (Fig. 2d), the approxima- 
tions adopted and the results derived are presented in 
Section 3. 

It is noted that analytical analyses in the shear-lag 
model are unable to handle the complicated singular- 
ity, which occurs at z = t for a bonded interface 
[19-21]. To avoid this singularity, a finite element 
analysis has been performed by assuming that the 
applied load is distributed over the inner 50% of the 
fibre diameter [22]. By using an average axial stress 
technique, this singularity is also avoided [23]. Both 
results [22,23] show that ~i is zero at the loaded 
surface, increases and reaches a maximum value at 
a relatively short distance (about 0.4 times [22] and 
0.25 times [23] the fibre diameter, respectively) below 
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Figure 1 Schematic drawing of the shear-lag model used in analys- 
ing the stress transfer from the fibre to the matrix during fibre 
pull-out. 
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Figure 2 Schematic drawings showing (a) the classical shear-lag 
model, (b) the fibre/coating system where (b - a) ~ a, (c) the fibre/ 
matrix system where b ~> a, and (d) the modified shear-lag model. 

the loaded surface. In addition, the maximum inter- 
facial shear stress obtained from the finite element 
analysis is approximately equal to that obtained from 
the shear-lag model [22]. The maximum interfacial 
shear stress occurs at z = t, based on the shear-lag 
model, and has been used extensively to define the 
shear strength debonding criterion. 
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2.1. Predictions obtained by ignoring 
radial dependences of axial stresses: 
the classical shear-lag model 

The radial dependences of axial stresses in both the 
fibre and the matrix are ignored in the classical shear- 
lag model (Fig. 2a). The maximum interfacial shear 
stress, z0, which occurs at z = t, is [-5, 6] 

G o [  Em 11/2 
z0 - 2 (1 + v ~ ) E f l n ( b / a )  coth(13t) (1) 

where E and v are Young's modulus and Poisson's 
ratio, and the subscripts f and m denote the fibre and 
the matrix, respectively. The coefficient 13 is given by 

1 I Em 11/2 
13 = a (1 + Vm)Ef ln (b /a )  (2) 

2.2. Predictions obtained by considering 
the radial dependence of the axial stress 
in the fibre only: fibre/coating 

When the radial dimension of the matrix is similar to 
that of the fibre (i.e. the matrix becomes a thin coat- 
ing), the radial dependence of the axial stress in the 
fibre has been considered [16]. The radial dependence 
of the axial stress in the coating is ignored due to the 
relatively small radial dimension of the coating com- 
pared to that of the fibre. However, a difference exists 
between Fig. 2b and the geometry considered else- 
where [16]. The system considered previously [16] is 
that a fibre has a uniform coating along its central 
portion and an axial tensile stress is applied at both 
bare ends of the fibre. The solution pertinent to the 
system depicted in Fig. 2b can be obtained by ad- 
opting the analysis in [16] and replacing the free 
surface condition for both ends of the coating by the 
following two boundary conditions 

s = 0 at z = t (3a) 

a2Go 
O'm b2 __ a2 at z = 0 (3b) 

where (3 m is the axial stress in the matrix (i.e. the 
coating). The solution of the maximum interracial 
shear stress in Fig. 2b for the case of ( b -  a ) ~  c 
becomes 

(b 2 __ a2)Em }1/2 
Zo = - O o  (1 q- v f ) [ a Z E f  + (b 2 - a 2 ) E m ]  

x { coth(~l t) 

2a 2 Ef ) 

+ (b 2 - a 2 ) E m [ e x p ( o h t )  - e x p ( - ~ l t ) ]  ; (4) 

where 0q is given by 

2 [ a2 Ef + (b2 - a2)Em ll/2 
C(1 = -a ; v f ) g  m (5) 



2.3. Predictions obtained by considering 
the radial dependence of the axial stress 
in the matrix only: fibre/matrix 

The radial dimension of the matrix is generally much 
greater than that of the fibre in the fibre pull-out tests. 
Hence, the radial dependence of the axial stress is 
considered in the matrix but is ignored in the fibre 
(Fig. 2c) [7, 15]. The solution of the maximum inter- 
facial shear stress obtained is [7, 15] 

stress, which should be regarded as an average value 
with respect to the radial coordinate [23]. In the 
modified shear-lag model [18], Equation 8a is satis- 
fied in an average sense, such that 

~ z  1 ~(r'crz ) 
~ - + r  ~r - o (8c)  

is satisfied for both the fibre and the matrix. However, 

-c O 
--(Yo(b 2 - a2)Em{coth(o~2t) 4- 2a2Ef/(b 2 - a2)Em[exp(o~2 t) - e x p ( - o ~ 2 t ) ]  } 

(6) 

where ~2 is given by 

~2 

a (1 + vm)E~21n-~Ta) -- ~ -- a2)/2] 

1/2 
(7) 

It is noted that the approximated shear stress in the 
matrix adopted in the analysis [7, 15] does not satisfy 
the free surface condition at r = b. However, the error 
due to this approximate shear stress decreases when 
b/a increases [24], and b > a is the condition for the 
fibre matrix system. It has been shown earlier [15] 
that when b/a = 10, the analytical solution obtained 
[15] is in excellent agreement with the numerical 
solution obtained by Muki and Sternberg [25] for the 
axial stress distribution in the fibre. 

3. The modif ied shear-lag model 
Compared to the analysis for the fibre/matrix system, 
the analysis for the modified shear-lag model contains 
three modifications: (1) the radial dependence of the 
axial stress in the fibre is included (i.e. not ignored); (2) 
the shear stress distribution in the matrix satisfies 
exactly (i.e. not approximately) the free surface condi- 
tion at r -- b, and (3) the exact equilibrium equation 
(as compared to the plane strain condition) is used to 
relate the tangential stress to the radial stress at the 
interface. To obtain analytical solutions, the approx- 
imations adopted earlier [18] are discussed below. 

For an axial symmetric geometry, which has the 
cylindrical polar coordinates, r, 0 and z, the equilib- 
rium equations between the normal and the shear 
stresses (i.e. cy and 'c) are [26] 

~Oz 1 ~(r'crz ) 
~--~ 4- r - - ~ r  - 0  (8a) 

~O'r ~'~rz O'r -- (3"0 
e~- + -~z 4- - - r  - 0 (8b) 

To satisfy strictly the equilibrium equations, the 
stress-displacement relation, and the essential bound- 
ary conditions, solutions for the stress-transfer prob- 
lem require extensive numerical analysis. Owing to the 
nature of the approximate analytical solution, it is 
impossible to satisfy exactly all the required condi- 
tions for the fibre pull-out problem [23]. Substitution 
of the shear stress from Equations 9 or 10 in [18] into 
Equation 8a results in a radial-independent axial 

to relate the tangential stress to the radial stress at the 
interface, the equilibrium equation of Equation 8b is 
satisfied exactly (see Section 7.1 in [18]). 

The solution of the average axial stress in the fibre, 
~t, obtained is [18] 

b e __ a2(P1Em 

e x p [ -  R3(t -- 2)] -- exp[~3(t - z)]-] 
/ 

(b 2 - a 2 ) p 1 E m  exp(ezaz) - exp( - e~3z)~ 

a 2 E f  exp(o~3t) exp( ~3t)J  

(9) 

where P1, P2 and P3 are defined by Equation 32a-c in 
[18], and 

1{  / 
~ = - [ a 2 E f  + (b 2 - a 2 ) ( P x E m  - P3Ef)] 

a / 

b2(1 + V m ) E f r b 2 1 n f b "  ~ 

• ?-5 - k \ a /  
(b 2 _ a2)(3b 2 - a 2 ) l  

- 4 b  2 + ( b  E - a 2) 
d 

+ 1t" ,10, 
The corresponding maximum interfacial shear stress, 
Zo, is 

'CO = -- CYo(b 2 - a2)p1Em 

x { c o t h ( ~ 3 t ) +  I 1  (b2 - a2)P3a~ ] 

x (b 2 _ a 2 ) p 1 E m [ e x p ( ~ 3 t )  _ exp( - ~3t)] 

x 2 { [ a 2 E f  + (b 2 - a 2 ) ( P x E m  - P3Ef)] 

I-bE(1 4- Vm)gf f 2 // -- a2)( 3b2 a2)'~ 
)'(L g.2- ~- ~ t b lnt~ ) (b2 4b 2 ) 
4-(b2 a2)( (14-v f )P1E m f f ~ _ ) j } l / 2  

4 + (11) 
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The maximum interracial shear stress derived based 
on various models (i.e. Equations 1, 4, 6 and 11 are 
compared in the following section. 

4. Theoretical predictions 
In the present study, Vr = 0.2 and Vm = 0.25 are used 
in the closed form analytical solutions to elucidate the 
essential trends. First, the calculated average axial 
stress in the fibre and shear stress distribution along 
the fibre length are shown. Then, the dependence of 
the applied stress required for initial debonding on the 
thickness of the pull-out specimen is examined. Fi- 
nally, the maximum interfacial shear stresses predicted 
from the classical shear-lag model, the fibre/coating 
system, the fibre/matrix system, and the modified 
shear-lag model, are compared. 

4.1. The stress d is t r ibut ions along 
the fibre length 

The normalized average axial stress in the fibre, ~f/C~o, 
and interfacial shear stress, r~/Oo, as functions of the 
normalized axial position, ( t -  z)/t, are shown in 
Fig. 3a and b, respectively, for Ef/Em = 1, and 
b/a = 100 at different values of t/a. When t/a de- 
creases, the distribution of (~e becomes more linear 
(Fig. 3a), and the interfacial shear stress becomes more 
uniform (Fig. 3b) along the fibre length. However, 
even when the thickness of the specimen equals the 
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fibre radius, variations of ~ along the fibre length still 
exist. 

Based on the interfacial shear strength debonding 
criterion, the interracial shear strength should be ob- 
tained from the applied axial stress required to initiate 
debonding (i.e. the initial debond stress) and the rela- 
tion between cr 0 and % (i.e. Equation 1, 4, 6 and 11). 
However, a simple assumption of a constant inter- 
facial shear stress has been adopted elsewhere, such 
that the interracial shear strength can be obtained 
readily from the initial debond stress, the radius of the 
fibre, and the thickness of the specimen. The results in 
Fig. 3b show that the assumption of a constant inter- 
facial shear stress along the fibre length is generally 
not recommended. 

4.2. The length dependence of the 
( ini t ial)  debond stress 

The interracial shear stress obtained has a negative 
sign for the coordinate system chosen in Fig. 1. How- 
ever, the sign of the shear stress signifies the direction 
of shear. A positive interracial shear strength, z~, is 
considered in the present study. Interracial debonding 
occurs when ro reaches % and the corresponding 
applied axial stress required is defined as cya. The 
calculated normalized debond stress, cyd/r~, as a func- 
tion of the normalized fibre length, t/a, is shown in 
Fig. 4 for b/a = 100 at different El~Era ratios. The 
cyd/r~ ratio increases from zero and reaches a plateau 
when t/a increases. When Ef/Em increases, both the 
plateau of c~a/r~ and the critical t/a ratio required to 
reach the plateau increase. For ceramic fibre-rein- 
forced ceramic composites, the fibre and the matrix 
generally have similar Young's moduli. In this case, 
~d/z~ reaches its plateau value at a fibre length of 
about five times the fibre radius (see Fig. 4), and ex- 
perimental observation of the length dependence of 
the debond stress is generally difficult. However, the 
predicted trend of the length dependence of oa has 
been reported for SiC fibre-reinforced titanium [27]. 
A recent study of fibre pull-out of SiC fibre reinforced 
borosilicate glass [28] also supports this length de- 
pendence. 
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Figure 3 The normal i zed  (a) average  axial  stress in the fibre, (~f/(~0, 
and  (b) interfacial  shear  stress, - zi/~0, as funct ions of the nor-  
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4.3. Compar ison 
The maximum interfacial shear stress reaches its 
asymptote at relatively short fibre lengths (Fig. 4). 
Hence, the asymptote of "Co is considered for the pur- 
pose of comparison among different shear-lag models. 

When the fibre length is sufficiently long, the asym- 
ptotes of to are 

C ~ o [  Em 11/2 
% - 2 (1 + Vm)Efln(b/a) (12) 

for the classical shear-lag model, 

{ (b2 a2)Em ]1/2 

Xo = - Cro (1 + v f ) [~ ;~ -  + ( ~  ~ a2)Em] 

for the 

1;0 = 

for the 

T O 

(13) 
fibre/coating system, 

[ - -  c~o(b 2 - a 2 ) E m ] /  

x 2 t ( 1  + vm)Ef[aZEf+ (b e - a2)Em]  

] (14) 

fibre/matrix system, and 

[ -- O-o(b 2 - a2)p1Em] / 

x 2 { [ a Z E f  + (b 2 - -  aZ)(PiEm P3Ef)] 

x b2 _ a2 

(b E - aE)(3b 2 - a2 ) )  
- 4b 2 + (b 2 - a 2) 

/ 

It 
for the modified shear-lag model. 

The calculated normalized asymptote of the max- 
imum interface shear stress, - To/Co, as a function of 
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Figure 5 Comparison of the normalized maximum interfacial shear 
stress, - %/~o, with b/a for (---)  the classical shear-lag model, 
(---)  the fibre/coating system, ( - - - )  the fibre/matrix system, and 
( ) the modified shear-lag model, for vf = 0.2, Vm = 0.25, 
t/a = 50, and EdEm = 1. 

b/a is shown in Fig. 5 for Ef/Em = 1, and the following 
results are concluded. (1) The analysis in the 
fibre/coating system is appropriate when (b - a) ~ a, 
and its results approach those obtained from the 
modified shear-lag model when b/a is close to 1. (2) 
The analysis in the fibre/matrix system is applicable 
when b >> a, and its results approach those obtained 
from the modified shear-lag model when b/a has large 
values. (3) The results obtained from the classical 
shear-lag model are similar to those from the 
fibre/matrix system when b/a > 2. However, com- 
pared to the classical shear-lag model, the results 
obtained from the fibre/matrix analysis show better 
agreement with the modified shear-lag model. (4) The 
modified shear-lag model considers the radial depend- 
ence of axial stresses in both the fibre and the matrix, 
and is applicable to the whole range of b/a. Also, when 
Ef/Em increases (see Fig. 3 in [18]), the applicable 
range of b/a decreases for the fibre/coating analysis 
but increases for the fibre/matrix analysis. 

5. Conclusion 
To derive the analytical solution for the stress transfer 
during fibre pull-out, the radial dependences of the 
axial stresses in both the fibre and the matrix are 
generally ignored. Two efforts have been made to 
include the radial dependence of the axial stress in the 
analysis. (1) In the fibre/coating system [16], the radial 
dependence of the axial stress in the fibre is con- 
sidered. (2) In the typical fibre pull-out test, the radial 
dimension of the matrix is much greater than the fibre, 
and the radial dependence of the axial stress in the 
matrix is considered [7]. The recently developed 
modified shear-lag model [18] considers the radial 
dependences of axial stresses in both the fibre and the 
matrix, and is applicable for any radial dimension of 
the matrix. Generally, the analysis in the fibre/matrix 
system [7] is applicable to the fibre pull-out test. 
However, in analysing the fibre-reinforced composite, 
a representative volume element is always chosen 
which has the same geometry of the single-fibre pull- 
out (Fig. 1), and the relative radial dimension of the 
fibre to the matrix (i.e. a/b in Fig. 1) is dictated by the 
square root of the volume fraction of fibres in the 
composite. In this case, the modified shear-lag model 
should be used when the volume fraction of fibres, 
a Z/b 2, is high in a composite. Finally, the residual 
stress is not included in the present analysis. In the 
presence of the residual radial and axial stresses, the 
analysis can be modified based on previously pub- 
lished reports [29, 30]. 
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